A new multiscale finite element method for high-contrast elliptic interface problems

نویسندگان

  • C.-C. Chu
  • Ivan G. Graham
  • T.-Y. Hou
چکیده

We introduce a new multiscale finite element method which is able to accurately capture solutions of elliptic interface problems with high contrast coefficients by using only coarse quasiuniform meshes, and without resolving the interfaces. A typical application would be the modelling of flow in a porous medium containing a number of inclusions of low (or high) permeability embedded in a matrix of high (respectively low) permeability. Our method is H1conforming, with degrees of freedom at the nodes of a triangular mesh and requiring the solution of subgrid problems for the basis functions on elements which straddle the coefficient interface but which use standard linear approximation otherwise. A key point is the introduction of novel coefficientdependent boundary conditions for the subgrid problems. Under moderate assumptions, we prove that our methods have (optimal) convergence rate of O(h) in the energy norm and O(h2) in the L2 norm where h is the (coarse) mesh diameter and the hidden constants in these estimates are independent of the “contrast” (i.e. ratio of largest to smallest value) of the PDE coefficient. For standard elements the best estimate in the energy norm would be O(h1/2−ε) with a hidden constant which in general depends on the contrast. The new interior boundary conditions depend not only on the contrast of the coefficients, but also on the angles of intersection of the interface with the element edges.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

65n12, 65n30 a New Multiscale Finite Element Method for High-contrast Elliptic Interface Problems

We introduce a new multiscale finite element method which is able to accurately capture solutions of elliptic interface problems with high contrast coefficients by using only coarse quasiuniform meshes, and without resolving the interfaces. A typical application would be the modelling of flow in a porous medium containing a number of inclusions of low (or high) permeability embedded in a matrix...

متن کامل

Multiscale Methods for Elliptic Partial Differential Equations and Related Applications

Multiscale problems arise in many scientific and engineering disciplines. A typical example is the modelling of flow in a porous medium containing a number of low and high permeability embedded in a matrix. Due to the high degrees of variability and the multiscale nature of formation properties, not only is a complete analysis of these problems extremely difficult, but also numerical solvers re...

متن کامل

High-Order Multiscale Finite Element Method for Elliptic Problems

In this paper, a new high-order multiscale finite element method is developed for elliptic problems with highly oscillating coefficients. The method is inspired by the multiscale finite element method developed in [3], but a more explicit multiscale finite element space is constructed. The approximation space is nonconforming when oversampling technique is used. We use a PetrovGalerkin formulat...

متن کامل

Implementation of a Mortar Mixed Finite Element Method using a Multiscale Flux Basis

This paper provides a new implementation of a multiscale mortar mixed finite element method for second order elliptic problems. The algorithm uses non-overlapping domain decomposition to reformulate a fine scale problem as a coarse scale mortar interface problem, which is then solved using an iterative method. The original implementation by Arbogast, Pencheva, Wheeler, and Yotov, Multiscale Mod...

متن کامل

Reduced order modeling techniques for numerical homogenization methods applied to linear and nonlinear multiscale problems

The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite element method (FEM)) is often computationally prohibitive, there is a need for a novel computational algorithm able to capture the effective behav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2010